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ABSTRACT 

An equivalence relation is defined in the set of all bounded closed convex 
sets in Euclidean space E n. The equivalence classes are shown to be elements 
of a pre-Hilbert space A n, and geometrical relationships between A n and E n 
are investigated. 

1. Introduction. With the operations of  vector addition and scalar multiplication, 
the class o,~ ~ of  all bounded convex sets in E" forms a topological semigroup with 
scalar operators. IfK~, K2 e ~ ,  and we write K 1 ,,~ K 2 when there exist centrally 
symmetric convex sets $1, $2 ~ o,Y " such that 

(1) K1 + $1 = K 2 + $2, 

then ~ is an equivalence relation in o,~ ". The equivalence class containing a given 

set K is denoted by IK]  and is called an asymmetry  class. In 13] it was shown 

that with the operations 

2[K] = UK] ,  

(2) [K , ]  4- 1-K2] = 1-K, 4- K2],  

the set A" of  asymmetry classes forms a normed vector space. The purpose of  
this note is to show that an inner product can be defined in A n so that it becomes 
a pre-Hilbert space (i.e. an infinite-dimensional inner-product space over the 
real numbers which is not complete), and to investigate briefly some geometrical 
properties of  KI,  K2 e~¢C" which imply that the corresponding classes [K1], 

[K2] are orthogonal in A". 
The treatment follows similar lines to that of G. Ewald [2] except that he 

considers a different equivalence relation: his relation is defined by (1) with $1, $2 
representing convex sets which are centrally symmetric in the origin. Consequently 

the corresponding equivalence classes are not invariant under translation. 
2. Asymmetry functions. The Steiner point or curvature centroid s(K) of  a 

convex set K ~ ~f'~ may be defined (see [6]) by the relation 
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where i is any fixed unit vector, 
u is a typical unit vector, 
f~, is the n-dimensional unit sphere in E", centred on 
dco is an element of surface area of  f~,, and 
H(K,u) is the supporting function of the set K, that is, 

(4) H(K, u) = sup x" y. 
x e K  

We shall require the following properties of s(K): 

s(gK) = 2s(K), 

(5) s(Kt + K2) = s(K1) + s(K2) 

the origin, 

for all 2 e R  and K, KI, K2EJ~ rn. 

(6) I f  ,,~r~ is topologised by the Hausdorff metric, [1, p. 34] then s(K) is a 
continuous function of K. 

Both (5) and (6) following immediately from the definition (3). 
Now let [K] ~ A" be any asymmetry class. Since [K] contains all the translates 

of  each of  its members, we may choose a representative K ~ [K] with the property 
that s(K) = o (the origin). For such a representative, write 

(7) a(K, u) = H(K, u) - H(K, - u). 

Then a(K,u), will be called an asymmetry function. 

(8) a(Kt,u ) = a(K2,u) i f  and only i f  K 1 ..~ K z. 

For suppose (1) holds. Since s(K1) = s(K2) = o by choice of  Kt  and Kz, (5 
implies s(S1)= s(S2)= s (say), and then by (4), 

H(Si, u)= A(Si, u) + s'u (i = 1,2) 

where R(Si, u) is the supporting function of Si relative to its centre. Hence 

H(K 1, u) + A(S 1, u) + s- u = H(K 1, u) + H(S 1, u) 

= H(Kt + S1, u) 

(9) = H(K2 + $2, u) 

= H(K2, u) + H(Sz, u) 

= H(Kz, u) + n(Sz, u) + s" u, 
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and similarly, 

H(K 1, - u) +/:](St, - u) - s" u = H(K2, - u) +/:]($2, - u) - s" u. 

Subtracting this latter relation from (9) and 
symmetry, 

we obtain 

as was to be shown. 

using the fact that, by central 

R(S~,u) =//(si, -u), (/= 1,2) 

a(K t, u) = a(K 2, u) 

Conversely, if a(Kl,  u) = a(K2,  u) then it is simple to verify that (1) holds with 
Sx, $2 defined by 

H(St ,  u) = ½(H(K2, u) + H(K2, - u)), 

H(S2, u) = ½(H(K 1, u) + H(KI,  - u)), 

and so K t ,~ K2. 
The main consequence of (8) is that a(K,u)  is an asymmetry class invariant 

so that a([K], u) may be properly defined by 

a([K], u) = a(K, u) for any K E[K]. 

Thus we have established the existance of a 1-1 mapping between A n and the 
class of all asymmetry functions a([K], u). The next statement shows that this 
mapping is an isomorphism: 

(10) For all real 2 and [K], [K1], [K2] ~A n, 

a(,t[K], u) = 2a([K], u) 

and a([Kd + [Kz],U) = a([Kd,u) + a([K2],u). 

The proof follows immediately from (2) and (5). It depends essentially upon 
the additivity property of s(K), which explains why asymmetry functions must 
be defined relative to this point as origin. 

The rest of this section is concerned with characterising asymmetry functions. 
This we can do completely in the case n = 2. 

(11) For each [K] ~ A  ~, the asymmetry function a([K],u) 
(a) is homogeneous in u, that is, 

a([K],2tu) = 2a([K],u) for  all real 2, 

(b) is a continuous function of u in E n, 
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(c) satisfies 
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f n  ua(EK],u)dco = o. 
n 

(d) (in the case n = 2) is a differentiable function of  u on the circle f~2 :l u I = 1, 
except possibly at an enumerable number of  points, and the derivative is of  
bounded variation on f~2. 

Assertions (a) and (b) follow from the properties of support functions, (d) 
follows from the properties of convex functions given in l-4], and (c) is a conse- 
quence of (3) and (7). We now come to the main theorem: 

(12) TrmOREM. Let f (u)  be a function defined for  u 6E  z. Then f (u)  is an asym- 
metry function (i.e. can be expressed in the form (7)for some K E J~ ~'2) i f  and 
only i f  it has the properties (a), (b), (c) and (d) o f ( l l ) .  

A slight modification of  the proof  of  Theorem 3 in [2] enables us to see that 
f (u )  is an asymmetry function if it has a continuous second derivative except 
possibly at the origin. In theorem (12), the conditions are necessary as well as 
being sufficient. The analogue of (12) for n > 2 dimensions is not known; it is 
difficult to see what would be the appropriate condition corresponding to (d). 
The necessity of the conditions in (12) is clear; to prove the sufficiency we need 
three lemmas, the first two of which establish conditions for a given function 
of  a real variable to be expressible as the difference of two convex functions. 

(13) LEMMA. Let dp(x) be a continuous function of  a real variable x in an 
interval [a, b] with the property that c~'(x) exists at all points of  [a, b] with 
the possible exception o f  an enumerable set G c [a, b]. Suppose further, that 
c~'(x) is an increasing function of  x where it is defined, i.e. 

~ ' ( x 0  > 4"(xz) for  xl ~ xz, and xl,  xz E [a, b] I G. 

Then c~(x) is a convex function of  x in [a, b]. 

Proof. Let Xo be any point of ra, b]. If  Xo ¢ G, let m = ~'(Xo), and if Xo E G, 
let m be chosen so that 

~p'(x) < m for X<Xo (x~[a ,b]  l G) 

'(x) > m for x > Xo (x ~ [a, b] \ G). 

In either case ~x(q~(x) - rex) > 0 for all x 6 [a, b] \ G with x > Xo and so, 

by lemma* of Hobson [4, p. 365], 

f ( x )  > f (xo)  + (x - xo)m for x > Xo. 

* I am indebted to Dr. B. Kuttner for drawing my attention to this lemma. 
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In a similar manner we can show that this same inequality holds also in the 
case x < Xo. We deduce that y = f ( X o ) +  ( x -  Xo)m is a supporting line to the 
graph of y = f ( x )  at Xo. Since Xo is any point of [a, b] this is sufficient to show 
that f (x)  is convex in [a, b] and the lemma is proved. 

(14) LEMMA. Let c~(x) be a continuous function of  a real variable x in an 
interval [a, b] with (o(a)= O. Suppose that dy(x) exists at all points o f  [a ,b]  
with the possible exception of  an enumerable set G, and is bounded variation. 
Then dp(x) can be written as a difference 

(15) ¢ ( x )  = - 

of  two convex functions ~k~(x), ~b2(x) in [a, b]. 

Proof. Since ~b'(x) is bounded variation, it can be written in the form 

¢ ' ( x )  = z l ( x )  - z 2 ( x )  

where X~(x) and X2(x) are increasing functions of x defined in [a, b] \G. Hence 
the integrals 

f; ~b,(x) = z,(t)dt (i = I, 2) 

are defined and then (15) follows. Further Xl(x), Z2(x) are convex by lemma (13), 
since ~,[(x) = X~(x) is an increasing function of x in [a, b] \ G. 

The remainder of the proof of the theorem is concerned with modifying the 
above procedure to apply to functions of  a vector variable u e E 2, instead of 
functions of a real variable x. We shall adopt the following notation. Le t f (u )  
be a function of u E E 2, and let r, 0 be the polar coordinates of u, i.e. 

u = (rcos0, r sin0). 

Then we shall w r i t e f ( u ) = f ( r ,  O) when we wish the display the coordinates of u 
explicitly. In this notation, the conditions of (11) become, 

(a') f (r ,O)  = r f (1 ,O)  for all r, 0, 

(b') f (1 ,  O) is a continuous function of 0, 

fo (c') f(1,O)cosOdO = f(1,O)sinOdO = O, 
o 

(d') f (1,0)  is a differential function of 0 for 0 < 0 < 2~, except possibly on an 
enumerable set G c [0, 2re], and this derivative is of bounded variation. 

(16) Suppose f (1 ,  O) > 0 is a continuous convex function o f  0 for  ~ <_ 0 < fl, where 
fl - ct < re. Then f ( u )  is a homogeneous continuous convex function o f  u in the 
sector S : ct < 0 <- fl o f  E 2. 

Proof. We must show that if u3 = 2ul + #u2, then 
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(17) 2f(ul) + #f(u2) >=f(u3) 

for all 2, # ~ 0 and all ut,  u2 ~ S. Let rt, 0~ be the polar coordinates of ui (i = 1, 2, 3). 
Since f(1,  0) (and thereforef(u)) is continuous in S, it will suffice to prove (17) in 
the special case Ot - 03 = 03 - 02 = ~ >- 0, say. A simple calculation shows that 
this implies that 2/# = r2/rt, so we may put 2 - r 2, # = rt  and then r3 = 2 r : 2  cos ~. 
Hence 

2f(ul)  +/tf(u2) - f ( u 3 )  = rtr2f(1,  01) + rlr2f(1,  02) - 2rlr2 cos ~b f(1,  03) 

> rlr2(f(1,  01) +f (1 ,  02) - 2f(1, 03)) 

since 0 < ~b < ½n, so 0 -< c o s $ <  1, and f(1,03) > 0, 

> 0 since f(1,  0) is convex. 

Hence (17) is true in this special case and so (16) is proved. 
The next statement is the "local form" of (16), and follows easily from it. 

Details of the proof are omitted. 

(18) I f  f (1,O) > 0 is locally convex at 0 = 0o, then f ( u )  is locally convex at 
each point o f  the line 0 = 0o, r > O. 

We now proceed to the proof of the theorem. Since f(1,  0) is continuous and 
f(1,  0) = - f ( 1 ,  0 + rr), we can choose the coordinate system in such a way that 
f (1 ,0)  = 0, By (d'), f ' (1 ,0)  (the derivative with respect to 0) exists in [0, rr] except 
possibly for an enumerable set G, and is of bounded variation. By lemma (14) we 
can write 

f(1,  0) = gt(0) - g2(0) 0 < 0 < ~r 

where gt(O) are convex functions of 0. For any integer n, define 

f gt(0) - 0gt(rr)/lr + K 0 < 0 < rr 
k(O + 2rrn) 

[ g2(O - n) - (0 - rr) g2 (n) / rc + K lr < 0 < 2~r 

where K is chosen sufficiently large that k(O) > 0 for all 0. It is easily verified that 
k(O) is continuous for all 0, is convex in each of the ranges 

nn < 0 < (n + 1)rr, 

and that 
f (1,  0) = k(O) - k(O + 7r). 

Thus if we write h(u )=  rk(O) where u = (r cos 0, r sin 0), we have 

f ( u )  = h(u)  - h ( - u )  

where h(u) is continuous in E 2, and is convex in each of the half-planes 
0 < 0 < rr, n < 0 < 2n by (16). 
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To complete the proof we must express f (u) as the difference of two functions 
which are convex in the whole plane. To do this, let k °, vo v~ v~ be the left and ~ R ,  ~ L ,  ~ R  

right derivatives of  k(O) at 0 = 0, zv as indicated, and put 

R = max(I k°[ + Ik°l, Ik l + Ik l). 
Let T be the line segment joining the points (R, re/2), (R, 3n/2) so that the supporting 
function of T is 

H(T,u) = I rR sin O, 0 < 0 <  

L - rR sin 0. n < 0 < 2re 

Since H(T,u) is convex in E 2, the function 

p(u) = h(u) + H(T, u) 

is convex in each of the half-planes 0 < 0 < ~, n < 0 < 2n. Further, when 0 = 0, 
the left derivative of p(1,0) is k ° - R  and the right derivative is kg ° + R. Since, 
by the definition of R, 

k ° - R < k ° + R ,  

we deduce that p(1, 0) is locally convex at 0 = 0, and so, by (18), p(u) is locally 
convex along the line 0 = 0, r > 0. Similarly, considering 0 = n, we deduce that 
p(u) is locally convex along the line 0 = zr, r > 0, and we deduce that p(u) is locally 
convex everywhere except possibly at the origin. But local convexity at the origin 
follows from the homogeneity of p(u) and so p(u) is convex in the whole plane. 
It may therefore be written as a supporting function H(K, u) for a suitable convex 
set K. Further, from the definition of p(u), 

Finally, 

and so 

f (u)  = H(K, u) - H(K, -- u). 

o =fa2uf(u)dco =fta2uH(K,u)dog-fnuH(K,-u)d~o,  

o = s ( K )  - s ( - K ) ,  

- -  2s(K). 
Thus the Steiner point of K is at the origin, and Theorem (12) is proved. 

3. An Inner Product on A n. Let [K1], [K2] e An, then define the inner product 

(19) < [Kz] l [K2] >n = a( [K , ] ,  u) a ( [K2], u)dco. 

This is, within a scalar factor, the usual inner product defined on the set C of all 
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continuous functions on f~.. By the remark following theorem (12) it is clear that 
the set of  all asymmetry functions is dense in the set 

fo" :? C* = { f l f ~  C, sin Of(O)dO -- cos Of(O)dO = 0} 

so that A" is isomorphic to a dense subset of C*. We can now show that 

(20) A" is not complete. 

I f  n = 2, this result is an immediate consequence of  theorem (12) for it is easy 
to construct a Cauchy sequence of  asymmetry functions which converges to a 

function whose first derivative is not bounded variation. For general n the statement 
follows from" 

(21) Let ~ be a hyperplane ((n - 1)-dimensional subspace of  E n) passing 
through the origin, and KI, K 2 be convex sets in ~ ,  then the inner products 

< [Kd l [~<d >.-~ 

of  the corresponding asymmetry classes in M', and 

< [K,] I [ ~ ]  >. 

of  the corresponding asymmetry classes in E n, are equal. 

Hence A "- 1 can be isometrically embedded in A ~, or alternatively, after identi- 
fication, A *- 1 may be regarded as a subspace of  A". Thus A 2 is a subspace of  
A" (n> 2 )  and since A 2 is not complete, (20) follows immediately. 

To prove (21), let u ~ E"  be any unit vector, and u'~ ~ be the unit vector 
whose direction is parallel to the perpendicular projection of  u on M'. Then for 
any K c ~¢t ~, 

n ( r ,  u) = I u. u'l n(K,  u'). 

This implies that the S te inerpoin tofK,  regarded as lying in W coincides with 
the Steiner point of K regarded as lying in E ". Taking this point to be the origin, 

a(K, u) = [ u "u'l a(K, u') 
and so 

fn  a r ~,/2), r ([K,] ,u)a([Kz] ,u)do~= | dO| a([K,],u)a([K2],u)cos2Odo9 
,d - ( 1 / 2 ) n  d f l n -  I 

f. a( = ~  ,,- [K,] ,u)a([Ke],u)dco 

where f~,_ 1 = f~, r~ ~#. From this, and the definition (19), statement (21) follows. 
It is of  course, possible to define many norms in A" other than that derived 

from the inner product (19). For  example, if we put 
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(22) 11 [K] !] = sup la([K] ,u)  l 

then C is complete, but theorem (12) enables us to construct a Cauchy sequence a 
of asymmetry functions (in the norm (22)) which does not converge to an 
asymmetric function, and so A" is still not complete. This statement answers a 
question raised in [3], for a is a Cauchy sequence in the norm defined there, and 
so again A" is not complete. 

If o*~'"is topologised by the Hausdorff metric, and either of the norms (19) 
or (22) is defined on A", the natural mapping Jr"  -~ A" is continuous. This follows 
from the continuity of the supporting function and (6). 

4. Orthogonality. We now consider some special geometric relationships 
between two convex sets K1, K2 ~ ~f"  such that the classes [KI], [K2] are ortho- 
gonal in A" with respect to the inner product (19). 

(22) Let T be any orthogonal transformation in E" with the property that 
T 2=  - I .  (Here - I  is the mapping which sends each x ~ E "  into - x . )  Then, 
for any K, the classes [K] and [TK] are orthogonal in A". 

Proof. 

<[K] ] [TK]> = f a ( [K] ,  u) a ([TK], u)d¢o, 

2 , ua  ,u co+ , ua  ,u co , 

O, 

since the sum of the integrands is zero. We deduce that the inner product zero, 
and so (22) is established. 

In the case n = 2, the only transformation T satisfying (22) is rotation through 
a right angle, so that orthogonality in A 2 is closely related to the concept of 
orthogonality in E 2. 

(24) Let R, S be absolutely perpendicular subspaces in E" (so that 
direR + d ims  = n). Let KR be any convex set symmetric in R (i.e. unchanged 
by reflection in R), and Ks be any convex set symmetric in S. Then [KR] and 
[Ks] are orthogonal in A .  

We omit the proof since it is very similar to that of (22). 
If A"(R) represents the subset of A" consisting of those classes [K] possessing a 

representative symmetric in the subspace R, then by [3, p. 15], A"(R) and A"(S) 
are directly complementary subspaces in A". With the inner product (19), (24) 
shows that these are orthogonal complements in A". 
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Let K* be the reflection of K in R, so that - K *  is the reflection of K in S. 

Then the identity 

K = ½ ( g  + K*) + ½ ( g  - g * )  

enables us to express each [K]  e A ~ as the sum of  the elements [½(g + K*)]  e A~(R) 

and [½(K - K*)] e An(S) in these subspaces. In fact the mapping 

[K]  -~ [½ (K + K*)] 

is the orthogonal projection of [K]  on to the subspace An(R), and similarly for 

the subspace S. 
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